Python code seems to me easier to understand than mathematical formula, especially when running and changing them. Like this (using PyTorch)? ì´ ê²ì ë¤ì¤ í´ëì¤ ë¶ë¥ìì ë§¤ì° ì주 ì¬ì©ëë 목ì í¨ìì
ëë¤. -1 * log(0.60) = 0.51 -1 * log(1 - 0.20) = 0.22 -1 * log(0.70) = 0.36 ----- total BCE = 1.09 mean BCE = 1.09 / 3 = 0.3633 In words, for an item, if the target is 1, the binary cross entropy is minus the log of the computed output. For y =1, the loss is as high as the value of x . ä»ç»ççï¼æ¯ä¸æ¯å°±æ¯çåäºlog_softmaxånll_loss两个æ¥éª¤ã æä»¥Pytorchä¸çF.cross_entropyä¼èªå¨è°ç¨ä¸é¢ä»ç»çlog_softmaxånll_lossæ¥è®¡ç®äº¤åçµ,å
¶è®¡ç®æ¹å¼å¦ä¸: NLLLoss ç è¾å
¥ æ¯ä¸ä¸ªå¯¹æ°æ¦çåéåä¸ä¸ªç®æ æ ç¾(ä¸éè¦æ¯one-hotç¼ç å½¢å¼ç). Yang Zhang. Medium - A Brief Overview of Loss Functions in Pytorch PyTorch Documentation - nn.modules.loss Medium - VISUALIZATION OF SOME LOSS FUNCTIONS FOR ⦠ããã«gpuããcpuã«å¤ãã¦0çªç®ã®ã¤ã³ããã¯ã¹ãæå® sum_loss += loss. To help myself understand I wrote all of Pytorchâs loss functions in plain Python and Numpy while confirming the results are the same. For this implementation, Iâll use PyTorch Lightning which will keep the code short but still scalable. If x > 0 loss will be x itself (higher value), if 0